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ABSTRACT 

An upwind unstructured grid cell-centred scheme for the solution of the compressible Euler and 
Navier-Stokes equations in two dimensions is presented. The algorithm employs a finite volume 
formulation. Calculation of the inviscid fluxes is based on the approximate Riemann solver of Roe. Viscous 
fluxes are obtained from solution gradients computed by a variational recovery procedure. Higher order 
accuracy is achieved through performing a monotonic linear reconstruction of the solution over each cell. 
The steady state is obtained by a point implicit time integration of the unsteady equations using local time 
stepping. For supersonic inviscid flow an alternative space marching algorithm is proposed. This latter 
approach is applicable to supersonic flow fields containing regions of local subsonic flow. Numerical results 
are presented to show the performance of the proposed scheme for inviscid and viscous flows. 

KEY WORDS Upwind finite volume scheme Euler equations Unstructured grids Compressible flow Navier-Stokes 
equations 

INTRODUCTION 

Over the past decade, there has been extensive work on the application of upwinding techniques 
to the solution of the compressible flow equations. The popularity of upwinding is due to the 
fact that, in one dimension, it models the underlying physics of the problem better than more 
conventional centred methods. A generalized formulation of upwind schemes for the Euler 
equations is given in Reference 1. Amongst the most accurate upwind formulations are the 
schemes of Roe2, and of Osher3. Although most practical implementations to date have utilized 
structured computational grids, recently attention has been given to the use of unstructured 
grids4-7. This interest is due to the flexibility that they offer for mesh generation and adaptivity. 
The favourable properties of upwinding and unstructured grids has lead to an increasing use of 
the combined methodologies8-14. 

In this paper, we introduce a higher order upwind unstructured grid cell-centred scheme that 
is capable of solving the two dimensional equations of compressible flow over a wide range of 
Mach numbers. The layout of the paper is as follows. The governing equations are the laminar 
compressible Navier-Stokes equations, and these are presented in the next section. The basic 
finite volume discretization is then described, and the extension to higher order spatial accuracy 
is explained in the following section. The implicit time integration of the discretized set of 
equations is also presented, and a space marching approach for the solution of supersonic inviscid 
flows is described later. A brief discussion of the numerical treatment of the boundary conditions 
is given followed by numerical results. 
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GOVERNING EQUATIONS 

The equations to be solved are the Euler equations, governing the flow of an inviscid compressible 
fluid, and the full Navier-Stokes equations, governing laminar flow of a compressible viscous 
fluid. These equations can be expressed in conservation form as: 

where U is the vector of unknowns, and Fi and Gi represent the inviscid and viscous fluxes 
respectively in the direction xi of a Cartesian coordinate system Ox1x2. In a non-dimensionalized 
form5, these vectors can be written as: 

where ρ, u, v, ε, P and T represent the density, Cartesian velocity components, specific total 
energy, pressure and temperature of the fluid respectively. In addition, Re∞ is the free stream 
Reynolds number and Pr is the Prandtl number, which is assigned the constant value of 0.72. 
For a laminar flow, the viscous stresses are related to the velocity gradients according to: 

where it is assumed that λ= —2μ/3. The coefficient of viscosity is obtained from Sutherland's 
law, which in non-dimensionalized form can be written as: 

where S is an experimental constant, which for air is taken to be 110 K. In the present work it 
is assumed that the fluid is a calorically perfect gas with the state equation: 

where y=cP/cv is the ratio of specific heats, which for air is taken to be 1.4. 
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BASIC FINITE VOLUME ALGORITHM 

The governing equations are considered in an integral conservation form. For a region Ω with 
its boundary Γ one can write 

and application of the divergence theorem results in: 

where n = (n1, n2) is the outward unit vector normal to the boundary. It is assumed that the 
computational domain is subdivided into a general assembly of either triangular or quadrilateral 
cells, or a combination of both. The above equation is then satisfied over each cell (control 
volume) in turn. Assuming a piecewise constant distribution of the unknowns, (7) for a cell c 
can be approximated as: 

where Fn and Gn represent the normal inviscid and viscous fluxes respectively to the cell sides, 
and Δtc=tm+1c — tmc is a time step. The actual fluxes are replaced by numerical fluxes and the 
integral is evaluated using a one point integration over the sides of the cell, resulting in: 

where δsc denotes the length of the side sc. The calculation of the inviscid and the viscous 
contributions to the right hand side of equation (9) will now be separately considered. 

Inviscid fluxes 
The inviscid fluxes are calculated using the approximate Riemann solver of Roe2. This leads 

to a crisp representation of shock waves. Moreover, the numerical flux of Roe has been shown 
to be suitable for accurate modelling of shear layers15. This numerical flux, in terms of left and 
right hand states, can be expressed as: 

where An = ∂Fn/∂U is the mean jacobian matrix which is defined in such a way as to ensure 
correct jump conditions across discontinuities. The matrix |A| is defined by: 

|A|=R|Λ|R-1 (11) 
where R is the matrix of the right eigenvectors of A and A is the diagonal matrix of the eigenvalues 
of A. The full definition of the entries in these matrices is given in Reference 16. If an eigenvalue 
of A vanishes/the numerical flux of Roe may lead to non-physical expansion shocks1. Following 
the remedy of Reference 17, this can be prevented by replacing any diagonal element of |A| 
which is less than a threshold, ελ, by: 

where ελ is taken to be a small fraction of the maximum eigenvalue. 
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Viscous fluxes 
The gradients of the flow variables which are required in the calculation of the viscous terms 

are obtained from a variational recovery procedure9. A piecewise linear distribution is assumed 
for the gradients, while the variables are represented by a piecewise constant approximation. 
Thus, for any flow variable f we can write: 

where Pc is the piecewise constant shape function associated with cell c and NK is the piecewise 
linear or bilinear shape function associated with vertex K. The nodal gradients are determined 
from the weighted residual requirement that: 

Substituting the assumed form of the approximations from (13) into the above equation results in: 

for the values of gradients at a cell vertex K16. Here ML denotes the standard lumped mass 
matrix and the summation over c extends over all the cells surrounding the vertex K. The 
boundary term in (15) need only be calculated when K lies on the boundary of the computational 
domain. This approach reproduces the exact gradient, on an arbitrary grid, when the variable 
f varies linearly. 

HIGHER ORDER SPATIAL ACCURACY 

The upwind algorithm described in the previous section is only first order accurate in space, 
which is not sufficient for practical calculations. Higher order accuracy may be achieved through 
the procedure proposed originally in Reference 11. Using the cell-averaged values a linear 
reconstruction of the variables is performed in a manner that ensures monotonicity. The left 
and right hand states, required in the evaluation of the inviscid fluxes in (10), are then determined 
using these reconstructed values. 

The linear representation of a scalar variable f over an arbitrary cell c can be expressed as: 
f(x,y)=f(x0,y0) + r.Ñf (16) 

where r is the position vector of the point (x, y) with respect to a reference point o. The cell 
gradients can be determined from the variational recovery procedure9 described earlier. If the 
gradient is assumed to be constant over the cell, and if the centroid of the cell is chosen as the 
reference point, the linear reconstruction given by (16) will be conservative in the sense that: 

where fa is the cell-averaged (piecewise constant) value of f over the cell. The linear reconstruction 
given by (16) may generally exhibit non-physical oscillations near any flow discontinuity. To 
prevent the appearance of such oscillations, a limiter is applied to the higher order correction 
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term in the form: 
f(x,y)=f(x0,y0)+Φr·Ñf (18) 

The cell limiter Φ is determined in such a way that the value of f over the cell does not exceed 
the extrema of the cell-averaged values of f in the surrounding cells. Determination of a suitable 
limiter requires an initial evaluation of the maximum and minimum allowable values of f over 
each cell. These are obtained as: 

fmax=max (fc,fi) (19a) 
fmin=min(fc,fi) (19b) 

where i runs over the surrounding cells. For a linear reconstruction, it is clear that the extrema 
will occur at cell vertices. The limiter for vertex K may be determined from an application of 
the defined monotonicity condition as: 

The limiter for a cell is then obtained as the minimum of the limiters calculated at its vertices. 
To ensure monotonicity for variables such as density and pressure, the linear reconstruction is 
performed on the basis of primitive variables ρ, u, v, and P. The resulting scheme has been 
found to be more stable than that which follows from using the conservation variables in the 
limiting procedure. 

It should be pointed out that due to the limiting procedure involved the higher order scheme 
is not guaranteed to be globally second order accurate. However, the results of numerical 
experiments, presented here and in Reference 16, have shown a marked improvement for the 
higher order scheme over the first order scheme. 

IMPLICIT FORMULATION 

An evaluation of all the terms on the right hand side of (9) at time level m+1 results in a system 
of the general form: 

KΔU=f (21) 
A point relaxation algorithm similar to the type proposed by Gnoffo18, and by Stoufflet et al.8 

is used to solve the above system of equations. Matrix K in (21) is decomposed into a matrix 
D containing the diagonal elements of K, and a matrix E containing the off-diagonal elements 
of K. The system of equations now takes the form: 

(D+E)ΔU = f (22) 
The solution of this equation system is achieved by an iterative procedure, using the recursive 
relationship: 

ΔUk + I = D - 1(f-EΔU k) (23) 
This is equivalent to a point Gauss-Seidel scheme, which requires only the solution of a 4 by 
4 system of equations for each cell. It should be pointed out that the implicit formulation of 
Reference 9 essentially follows (23) but performs only one iteration per time step. Application 
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of (23) with a sufficient number of iterations results in faster convergence towards the steady 
state. To avoid the problem of using too much computer memory, the entries in the sparse 
matrix E are recalculated at each iteration. Due to the complexity of evaluating the viscous 
contribution to the matrix E, the off-diagonal viscous contributions to this matrix are ignored. 
This results in the same formulation as in Reference 9. 

For the numerical flux of Roe, (9) in its fully implicit form can be expanded to give: 

where subscripts c and r represent the current cell and its surrounding cells respectively. Following 
the approach of Reference 9, the values of the unknowns and the fluxes at time level m+1 are 
linearized and written in terms of the values at time level m as: 

Here, values of the unknowns at the current cell are considered at time level m + 1, while the 
recent available values, indicated by an asterisk, are used for the surrounding cells. Details of 
the evaluation of the jacobian matrix Bns for the implicit treatment of the viscous terms can be 
found in Reference 16. Substituting the expressions for the linearized terms from (25) into (24), 
and re-arranging results in: 

Owing to the expected large variation in size of the cells through the mesh, local time stepping 
is used. This ensures a constant Courant number throughout the mesh. Equation (26) can be 
applied independently to each cell. Sweeping is normally done in the numbered order through 
the cells in one time step and in the reverse order for the next step. This results in a random 
sweeping which depends solely on the mesh numbering. Sweeping can be done according to 
a user-specified criterion. This can be achieved by renumbering the cells according to the distance 
from a certain point or line. The effectiveness of the directional sweeping is most obvious for 
supersonic flow fields14. 

The implicit formulation presented here is based on the first order scheme. The higher order 
version of the scheme can be made implicit by considering the reconstruction given by (18) at 
time level m+1. Evaluation of the higher order correction terms, especially the limiter Φm+1, 
proves to be difficult and time consuming. Therefore, in practice these terms are determined 
at time level m and there will be no contribution from the higher order terms to the left hand 
side of the system of equations. Hence, for the higher order implicit formulation, the left hand 
side matrix is the same as for the first order scheme. It should be mentioned that this time 
lagging of the higher order correction terms will introduce some degree of explicitness into the 
formulation. Therefore, a reduction in the maximum allowable time step can be expected. In 
practice this reduction in time step is problem dependent and in the most severe cases the time 
step used for the higher order scheme may be required to be one tenth of that used for the first 
order scheme. 

SPACE MARCHING 

It is well known that, in a supersonic flow field, disturbances are carried downstream. This 
physical property can be employed to devise efficient algorithms for the numerical solution of 
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supersonic steady state problems. The class of schemes based on this line of reasoning are 
known as space marching schemes19-21. Here, the domain of interest is divided into planes 
which are nearly normal to the direction of the flow. Since the solution at each of these planes 
(stations) depends only on the solution in the upstream stations, the steady state equations can 
be solved completely for each plane and the solution marched downstream. Hence, the solution 
can be obtained by performing only one sweep over the computational domain. 

Formulation of space marching for the Euler equations 
For many practical high speed flight situations, where the body is slender, the direction of 

the flow around the body does not vary drastically from the free stream direction. For these 
cases, the domain of interest can be subdivided into a set of planes which are roughly normal 
to the direction of the flow. The mesh within each of these planes can be completely unstructured. 

The equations which are considered are the steady state Euler equations. For realistic flows, 
even when the free stream Mach number is much higher than unity, regions of subsonic flow 
can be expected, e.g. in the vicinity of stagnation points. In these subsonic regions (pockets), 
disturbances are propagated in all directions. As a result, a space marching technique cannot 
be applied without modification for the subsonic parts of the flow field. An efficient procedure 
can be obtained by combining the use of space marching in the prevailing supersonic regions 
of the flow, and time marching in the subsonic regions. In order to have a unified formulation 
for both supersonic and subsonic regions, the equations are considered in their transient form. 
The numerical discretization is basically achieved by a finite volume formulation similar to that 
described earlier. 

In the fully supersonic regions of the flow field, starting from the inflow, the time dependent 
equations can be solved for each marching plane in turn. The finite volume formulation can be 
written as: 

If a side has both its neighbouring cells in the marching plane then the numerical fluxes, denoted 
by are obtained from (10). For the sides that lie on the boundaries of the marching plane 
the numerical flux is simply calculated using the upwind cell values, and application of an 
approximate Riemann solver is unnecessary. As long as the component of the flow velocity 
normal to the marching plane remains supersonic, this procedure is correct. By choosing a large 
time step (e.g. of the order of 106) the transient term in (27) becomes negligible and the formulation 
leads to an iterative procedure for the steady state equations. The system of equations resulting 
from a discretization of (27) is solved implicitly, in the marching plane, according to the process 
which was explained above. It should be noted that the sweeping is now only performed over 
the number of cells in the marching plane, and not over the total number of cells, thereby 
achieving fast convergence for fully supersonic flows. Once the solution is obtained for a marching 
plane, the same procedure is repeated for the next plane downstream. In this manner one sweep 
over the domain will result in the steady state solution being obtained. 

For supersonic flow with subsonic pockets, the problem is to track down and identify the 
subsonic regions and to solve the equations in those regions by using a time marching scheme. 
The subsonic regions are identified by using a small CFL number in the first sweep in each 
plane. The reason for using a small Courant number is that if the flow at steady state in a 
particular plane is subsonic, a relaxation procedure must be used and this calls for a sensible 
choice of the time step size and a consideration of downstream conditions. If the local Mach 
number in all cells of the current marching plane is supersonic, the calculations will proceed 
downstream. If a Mach number of less than unity is encountered, the current plane is recorded 
as pertaining to the relaxation region. The plane recorded as being subsonic and its two adjacent 
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planes are taken to be the relaxation region and the solution in these three planes is time marched 
until convergence to steady state. If the solution in any of the two adjacent planes becomes 
subsonic, the relaxation region is extended by one plane in the direction where subsonic flow 
were detected and time marching is resumed in the updated relaxation region. In this manner 
the relaxation region can grow in both upstream and downstream directions until the boundary 
of the subsonic pocket reaches its full extension. When full convergence in the subsonic region 
is achieved, the space marching procedure is continued downstream. 

The extension to higher order accuracy follows from the process described above. There are, 
however, some modifications necessary to comply with the requirements of the space marching 
technique. Evaluation of the gradients has to be modified to use only the physically relevant 
information. Consider the marching plane mp, where the flow is fully supersonic, and its 
neighbouring planes. From the cell-averaged values of a variable f, the corresponding value at 
a vertex K is calculated from: 

It should be noted that here the summation extends only over the cells in the marching plane 
and its neighbouring upstream plane. If the plane is in the subsonic region, the summation 
takes place over all the surrounding cells and the formulation will be similar to a variational 
recovery procedure9. The cell gradients follow from the use of the standard linear or bilinear 
shape functions together with the calculated vertex values. 

Mesh generation and adaptivity for space marching 
For space marching schemes, the process of mesh generation requires some consideration. It 

was mentioned in the introduction that unstructured grids provide great flexibility in handling 
complex realistic geometries. However, space marching techniques, due to their design, require 
a degree of structure in the mesh. Here, a compromise is arrived at by using grids which exhibit 
a structure in the direction of the flow but are otherwise unstructured. McGrory et al.22 have 
reported a similar approach. 

One of the main advantages of using unstructured grids is the ease with which mesh refinement 
can be carried out. The mesh refinement procedure is more restricted for space marching 
calculations, since the structure of the marching planes must be preserved. Local mesh enrichment 
has the property that the underlying structure of the mesh does not change and so is ideal for 
the present purpose. The mesh enrichment method used here follows the ideas presented by 
Morgan and Peraire5. 

BOUNDARY CONDITIONS 

No special treatment is needed for the inflow and outflow boundaries. The approximate Riemann 
solver automatically selects the appropriate boundary conditions according to the sign of the 
characteristic velocities. 

For the Euler equations, the physical boundary condition at the slip wall is that the normal 
component of the velocity to the wall is zero. To help achieve this, a set of imaginary cells is 
introduced inside the wall boundary. The values of the velocity components for these cells are 
set so that the average interface velocities satisfy the tangency condition. For computational 
purposes, the values of two other variables (density and pressure) must also be specified at the 
imaginary cells inside the wall. These values are taken to be the same as the values inside the 
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domain. For problems in which the solution can be expected to possess a certain degree of 
symmetry, computational efficiency will usually demand that the solution is computed for only 
one half of the domain. This will introduce a type of boundary across which all the flow conditions 
are the same. The satisfaction of the symmetry requirement is achieved by the same procedure 
as that described for a slip wall. 

The boundary condition specific to the Navier-Stokes equations is the no-slip wall. The 
no-slip condition for the velocity at a wall is imposed by a similar approach to that taken by 
Gnoffo18. Using the imaginary cell concept, all the velocity components at these cells are taken 
to be zero. For an isothermal wall, the temperature at these cells is fixed at the wall temperature. 
For an adiabatic wall the condition ∂T/∂n=0 is satisfied by taking the temperature at the 
imaginary cell to be the same as the temperature at the adjacent cell inside the domain. For the 
pressure, the boundary layer assumption is employed and the pressure at the imaginary cell is 
taken to be the same as the pressure from inside the computational domain. Other variables 
can then be determined from the equation of state. This procedure for modelling the no-slip 
wall boundary condition is equivalent to assuming that the wall is half a cell size outside the 
domain. Considering the very small size of the cells that are usually employed near the no-slip 
wall to capture the boundary layer, this should not introduce any serious error into the 
calculations. 

NUMERICAL RESULTS 

Apart from the first two examples presented in this section, the other examples are solved using 
an adaptive refinement approach. The mesh adaptivity for the third and fourth examples is 
achieved by complete remeshing of the computational domain using the advancing front 
technique6. For brevity, in each case only the solution on the final mesh employed is discussed. 
In the final example, which illustrates the application of the proposed space marching technique, 
mesh adaptivity is obtained by a mesh enrichment approach5. 

Inviscid transonic aerofoil 
The first example consists of Mach 0.8 inviscid flow past a NACA 0012 aerofoil at an angle 

of attack of 1.25°. This is an AGARD Fluid Dynamics Panel test case23 (Test Case 01). A 120 
by 29 O-mesh is used for this problem. Detail of the grid near the aerofoil is depicted in Figure 1. 
The solution contours for pressure coefficient, CP, using the first order upwind scheme is presented 
in Figure 2. The results obtained by the explicit and implicit versions of the scheme are identical. 
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During the implicit time stepping the Courant number was increased to 1000. A comparison 
between the convergence curves for the explicit and the implicit versions of the scheme is presented 
in Figure 3. This comparison clearly illustrates the advantage of the implicit time integration in 
obtaining fast convergence towards the steady state. The lift coefficient history for the implicit 
case is given in Figure 4. Figure 5 presents the pressure coefficient contours obtained by using 
the proposed higher order algorithm. A comparison between the first order and the higher order 
results for the variation of CP, M, and entropy deviation, Ed, along the surface of the aerofoil 
are depicted in Figure 6. As can be seen the higher order scheme resolves the weak shock at the 
bottom, which is highly smeared by the first order upwind scheme. The false entropy created 
by the higher order scheme is much smaller than that created by the first order method. According 
to Reference 23 the solution by Lytton (Contribution No. 3) was one of the most accurate 
solutions to this problem. The mesh in that study had 158 points on the aerofoil, which is higher 
than the number used here. The distribution of CP and M from Lytton's solution are also given 
in Figures 6a and 6b. On the upper surface of the aerofoil the higher order solution compares 
quite well with the solution of Reference 23. The position of the shock on the lower surface 
differs by about 0.05 chord length in the two solutions and the higher order scheme gives a 
larger undershoot after this shock. Nevertheless, the overall agreement between the two solutions 
is very good. The lift coefficient history for the higher order solution is presented in Figure 7. 
The lift coefficient obtained with the first order scheme is 0.295 while the higher order solution 
gives a value of 0.332, which is closer to the value of 0.346 as computed by Lytton23. 

Supersonic viscous flow past a flat plate 
This example consists of a developing laminar boundary layer over an insulated flat plate. 

The problem definition is: 
Free stream Mach number 
Reynolds number 
Free stream temperature 

4.0 
4.0 x106 

218 K 
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A Prandtl number of 0.75 is used for this problem. A structured mesh of triangles consisting 
of 20,000 cells and 10,201 points as shown in Figure 8 is employed. The non-dimensional plate 
length is 1 and the distance of the first layer of grid points from the wall is 0.0001. For this 
laminar boundary layer a similarity solution exists24, and can be obtained by introducing the 
new variable: 
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In Figure 9 the profiles of the non-dimensionalized velocity, u/U∞, against y′ at four stations, i.e. 
x=0.3; x=0.5; x=0.7; x=0.9 

computed by the use of the basic first order method are plotted together with the analytical 
solution. As can be seen the numerical results exhibit a thicker boundary layer which indicates 
excessive diffusion. This is due to the inherent numerical viscosity of first order upwinding. The 
solution profiles at different stations do not match very well, which could be related to a poor 
determination of density in the boundary layer. Typical convergence curves for this case are 
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depicted in Figure 10. A Courant number of 10 is used for these calculations. In the higher order 
solution, separate limiters are used for each equation in order to minimize the effect of artificial 
diffusion. The evaluation of the maximum and minimum allowable values is based on the three 
neighbouring cells sharing a side with the current cell. The non-dimensionalized velocity profiles 
are presented in Figure 11. Comparing with Figure 9 the results are clearly improved. The 
computed velocity profiles lie on top of each other and are fairly close to the analytical solution. 
A less diffusive reconstruction can be achieved by using all the surrounding cells to determine 
the maximum and minimum allowable values. The results obtained with this approach are 
illustrated in Figure 12. The velocity profiles are in excellent agreement with the analytical 
solution. This emphasises the importance of the discretization of the inviscid terms on the 
accuracy of Navier-Stokes calculations. 

Compression corner in hypersonic viscous flow 
This example consists of a hypersonic flow past an 18° compression corner. The problem 

specification is as follows 
Free stream Mach number 
Reynolds number 
Free stream temperature 
Wall temperature 

14.07 
7.2 x 104 

90 K 
297 K 

The adaptively refined mesh for this problem is shown in Figure 13. The mesh consists of 
6323 triangular cells and 3265 points. In order to accurately model the boundary layer, 3720 
cells are arranged in fifteen structured layers near the no-slip wall. The distance of the first layer 
of grid points from the solid wall is 0.0004. The solution contours of density, Cp, and M, using 
the higher order scheme are given in Figure 14. Variation of the coefficients of heat transfer, Ch, 
and skin friction, Cf, and of the normalized pressure, P/P∞, along the wall are depicted in 
Figure 15. These values are plotted together with a solution obtained by Thomas25 at the NASA 
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Langley Research Center using a third order accurate code (CFL3D) on a structured grid. The 
present method predicts higher values of skin friction and heat transfer at the reattachment 
point, but the two solutions generally compare well. The pressure along the wall does not seem 
to be a very sensitive parameter, and the plots of P/P∞ are similar. 

Double-ellipse in hypersonic viscous flow 
The fourth example considered is hypersonic flow past a double-ellipse configuration at 30° 

angle of attack. The problem definition is: 
Free stream Mach number 
Reynolds number 
Free stream temperature 
Wall temperature 

8.15 
1.67 x 107 

56 K 
288 K 

The final mesh employed for this problem has 8149 cells, of which 1870 are stretched 
quadrilateral cells arranged in ten layers in the vicinity of the solid surfaces. The number of 
points in the mesh is 5172. The mesh is depicted in Figure 16. The first layer of grid points is 
located at a distance of 0.0025 from the surface of the configuration. The solution contours of 
density, Cp, and M, obtained with the higher order scheme, are depicted in Figure 17. Variation 
of the heat transfer, skin friction, and the pressure coefficient for this solution are shown in 
Figure 18. Features of the solution are, the strong bow shock which is captured sharply, high 
heating at the stagnation point, and the flow separation region at the foot of the canopy. 

Supersonic inviscid flow past a blunt body 
The final example consists of a supersonic flow past a symmetrical blunt body. The free stream 

Mach number of the flow is 6.57, and y = 1.38. The solution to this problem exhibits a subsonic 
region behind the bow shock. Due to symmetry, the computational grid covers only half of the 
domain. The initial mesh used for this problem is shown in Figure 19a. The mesh consists of 
419 triangular cells and 243 points. The solution is obtained via the space marching form of 
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the scheme. The number of marching planes is 15. The results obtained with a Streamwise 
Upwind Petrov-Galerkin (SUPG) method on a structured grid are also available for this 
problem. Calculations for this example are performed by using the higher order scheme. In 
Figure 19b the solution contours of pressure coefficient for the space marching calculations are 
given. Using the values of density along the axis and over the surface of the blunt body, a 
comparison is made between the space marching and the SUPG results which is shown in 
Figure 20. The corresponding comparisons for the velocity components at the exit are presented 
in Figure 21. Two levels of mesh enrichment are used to enhance the accuracy of the solution. 
There are 1121 and 2043 cells in the first and second refined meshes respectively. These are 
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presented in Figures 22a and 25a. In each case, the converged solution is used as the initial 
condition for the next refined grid. Solution contours of CP for the first refined mesh are given 
in Figure 22b. Figure 23 illustrates the variation of density along the axis and over the surface 
of the blunt body, for the space marching and the SUPG computations on the second mesh. 
The values of velocity components along the outflow boundary are shown in Figure 24. The 
corresponding results for the second refined mesh are presented in Figures 25b, 26, and 27. As 
can be seen from these Figures the solution obtained with the space marching scheme compares 
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well with the SUPG results. The resolution of the shock wave, even on a coarser mesh, is sharper 
in the space marching results. The converged steady state solution, in each case, has been 
obtained by one pass over the solution domain. No monotonicity problem was observed for 
the higher order solution. 
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CONCLUSIONS 

An upwind finite volume scheme for solving the compressible Euler and laminar Navier-Stokes 
equations on unstructured grids has been developed. Higher order spatial accuracy is achieved 
via a linear reconstruction of the primitive variables, which leads to enhanced accuracy over 
the first order results without producing spurious oscillations. It has been shown that the 
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discretization of the inviscid terms has a significant effect on the accuracy of the computed 
boundary layers. Convergence towards steady state is achieved by use of a point implicit solver 
using local time stepping. Numerical examples indicate that the scheme performs well for a wide 
range of problems. The use of space marching in conjunction with unstructured grids for 
supersonic inviscid problems has been examined. An algorithm for detecting the imbedded 
subsonic regions within the supersonic flow field is introduced, and the results of using this 
approach have been shown to compare well with the results of a time marching scheme. 



UPWIND UNSTRUCTURED GRID SOLUTION ALGORITHM 303 

Further research work can be carried out in two areas. First, one can attempt to improve 
the numerical algorithm in terms of accuracy. The spatial accuracy of the scheme can be 
improved by performing a quadratic reconstruction of the variables. Moreover, it has been 
argued that some form of multidimensional Riemann solver can enhance the accuracy of the 
numerical scheme, especially for highly distorted grids. Secondly, one may wish to extend the 
adaptivity of the proposed scheme to encompass a wider range of problems. Research towards 
the extension of the proposed scheme to 3-D and the inclusion of turbulence modelling is being 
carried out and the initial results are encouraging. 
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